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1. INTRODUCTION AND MAIN RESULTS

The nth integrated Meyer-Konig and Zeller operator Mn , n E N (see [2]),
associates with a real valued Lebesgue integrable function f defined on
1= [0, 1], the function series

ro

Mn(f, x) = L Mnk(x) f f(t) dt,
k=O I k

converging for 0 ~ x < 1, with

I [k k+l]
k= k+n'k+n+l '

and

kEN,

Mn(f, .) can be written as a singular integral of the type

with the positive kernel

ro

Hn(x, t) = L Mnk(x)Xk(t),
k=O

27

(1.1 )
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where Xk denotes the characteristic function of the interval f k with respect to
f. Mn is linear, is positive and satisfies

(1.2)

The sequence {Mn: n E N} generates a linear approximation method on the
normed spaces Lp(f), 1 <,p < 00, Le., limn4C() Ilf- Mn(f)llp= 0 for fE Lp(f).

In [3] it was established that the degree of approximation of this method
can be O(n-I) for suitable subspaces of Lif), 1 <P < 00, both globally (i.e.,
on all of f) and locally (Le., on sub-intervals of (0, 1». Moreover, n- I is
locally the saturation order of the method {Mn : n EN}. The corresponding
local saturation class is described in [3, Satz 3.1]. The aim of this paper is
to extend these results to the still open case p = 1.

We first shall prove the following local direct theorem.

THEOREM 1. Let fE LI(f), f' E BV[a, b], 0 <a <b < 1. Then for
[all b l ] c (a, b) it holds that

Ilf- Mn(f)IIL1fa"b
l

) = O(n-I)(n -+ 00).

The proof will be tailored specially for the case of the L I norm (where the
proof in [3] breaks down) and follows ideas in a paper by Bojanic and
Shisha [11.

For fE LI(f), f' E BV(f), the proof simplifies considerably and one
obtains the global direct theorem,

The converse to Theorem 1 can be obtained by analogy (with only slight
modifications) to the case p > 1 [3, Satz 3.1]. Thus, if

8 1 = {fE LI(f):f' E BV[a, b]

and x(I - x):t"'(x) = hex), x E [a, b], h E BV[a, b]},

we have the local saturation theorem.

THEOREM 2. For fE LI(f) and 0 <a < a l < b l <b < 1, there are the
following implications:

(i) Ilf - Mn(f)IILlfa,bl = O(n- I)(n -+ 00) implies fE S1;

(ii) fE S 1 implies Ilf- Mn(f)IIL,[a,bd = O(n-I)(n -+ 00);

(iii) Ilf- Mn(f)IILlla,bl = o(n-I)(n -+ 00) implies fE 8 1 with h
constant;



MEYER-KONIG AND ZELLER OPERATORS 29

(iv) fESt with h constant implies Ilf-MAf)tlat,b,j=
o(n-l)(n~ (0).

A global saturation theorem for 1~P < 00 is still missing.

2. NOTATION AND SOME LEMMAS

Let Xla,bl denote the characteristic function of [a, b l s; [0, 1] and let Ala,bl
be defined by

A(a,b](t) = 1 - X[a,bl(t), tEl,

The proof of Theorem 1 will be based on the following estimation. For
n ~ 2, 0 ~ x ~ 1, and m~ 1,

(2.1 )

where Am is independent of n and x [3, Lemma 2.1]. For 0 ~ x ~ 1 and
n ~ 1

(2.2)

where A is independent of n and x (see [3,(2.3)]). For gELI(I),
[aI' b I l c (a, b), n ~ 1 and r an arbitrary natural number,

(2.3)

where B is independent of g and n. The proof of (2.3) is similar to the proof
of Lemma 2.2 of [3] with some obvious modifications.

3. PROOF OF THEOREM 1

LetfE LI(I),f' E BV[a, b] and 0 <a <a I <b I <b < 1.
The partition

Mn(f) - f= Mn(x[a,b1f) - Xla,b]f+Mn(A[a,b1f) - A[a,b]f

implies

II Mn(f) - fIIL tla!,brl ~ II Mn(x[a,blf) - Xla,b]fIIL,la"btl +o(n-
I
), (3.1)

by (2,3) and the fact that Ala,b]f= 0 on [a p bI]' Fix x E [a p bI]' From the
representation

f(t)-f(x)=f'(x)(t-x) +r(t-p)dj'(;J)
x
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for t, x E [a, b], and (1.1) and (1.2) we obtain

Mn(x[a,blf, x) - Xla,b1f(x)

b

= f Hn(x, t)[f(t) - f(x)] dt
a

b I

=f'(x)Mn((t-x),x) + I Hn(x,t)I (t-fJ) df'(P) dt.
a x

Because of (2.2), the first right-hand term can be majorized by
An-Illf'IILtla,b)'

Fix 0 E (0, 1) and extend f' outside of [a, b] so that df' (P) = 0 for
fJ E [a, b]. Then

II: Hix,t) {(t-fJ)df'(P)dt'

~ ( Hn(x, t) It - XI" {ltif'(p)11 dt

b II-xl

~t Hn(x, t) It - xlL
II

-
xl

Idf'(P)1 dt

I(b-a)f~l

~ L Inj(x),
j=O

where
II-xl

Inj(x) = I Hn(x, t) It - xl I Idf'(P + x)1 dt.
j~';;II-xl<U+I)~ -II-xl

Clearly,

where

Snio,x) = I Hn(x,t)lt-xldt.
j~';;II-xl<U+I)~

Next we shall estimate the factors Snio, x) for j = 0 and
1~j~ [(b-a)jo] separately. We have

Sno(o, x) = f Hn(x, t) It - xl dt
O';;II-xl<~

<°f Hn(x, t) dt = O.
I
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For 1 <'j,

by (2.1).
It follows that

!MAX[a.blf, x) - X[a.bl/(x)1

A /;
<,-;-"/'IIL,[a.b] + ~L/; !df'(jJ +x)/

A [(b-a)//;] 1 u+ I)/;

+ ~3 \ L -:rJ !dj'(jJ + x)/.
un j=1 J -U+I)/;

31

Integrating this last inequality with respect to x, and taking into account that

b l u+ I)/;J f Idj' (jJ +x)1 dx <, 2(j + 1)~ III' IIBv[a.b] ,
a, -U+ I)/;

we obtain

II Mn(xla.b]/) - Xla.b/IIL,lal,bd

A(b l - a l), 2 2A 2 , ~ j + 1
<, n III IIL,la.bl + 215 + ~2n2 III IIBV[a,bl /~'I T
= O(n- I

), (3.2)

if we choose 15 = n- I
/

2
•

Combining (3.1) and (3.2) completes the proof.
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